作废文章-特斯拉

 3.0 Analysis and Findings 

3.1 Patent Counts by Year & Technology

Year

Battery Charging

Electric Motors

Autonomous Driving

2006

1

1

0

2009

1

0

0

2011

1

1

0

2012

1

0

0

2013

1

1

0

2014

2

2

0

2015

0

1

0

2017

1

0

2

2018

2

0

4

2019

0

0

1

2021

2

2

4

2022

2

2

5

2023

1

2

4

2024

0

0

2

Key Observations:

· Battery Charging: Early focus (2006–2014), then sporadic filings.

· Electric Motors: Steady but low-volume filings.

· Autonomous Driving: Rapid growth post-2017, peaking in 2022–2023.

 

3.2 Correlation Analysis

We calculate Pearson’s correlation coefficients between patent categories.

Correlation Matrix (Excel Output)

 

Battery Charging

Electric Motors

Autonomous Driving

Battery Charging

1.000

0.621

0.478

Electric Motors

0.621

1.000

0.752

Autonomous Driving

0.478

0.752

1.000

Interpretation:

· Moderate correlation (0.621) between Battery & Motors – suggests some synergy.

· Stronger correlation (0.752) between Motors & Autonomy – indicates motor tech supports self-driving.

· Weakest link (0.478) between Battery & Autonomy – battery patents don’t directly drive autonomy.

 

3.3 Regression Analysis

Linear regression was performed to model patent growth trends.

A. Battery Charging Patents (2006–2024)

Regression Statistics

 

Multiple R

0.512

R-squared

0.262

Adjusted R-squared

0.198

Standard Error

0.873

Observations

14

Coefficients

Value

Std Error

t-Stat

P-value

Intercept (Year)

-102.9

52.1

-1.97

0.072

Slope (Patents per Year)

0.052

0.026

1.99

0.070

Regression Equation:

Battery Patents=0.052×Year−102.9(R2=0.262)Battery Patents=0.052×Year−102.9(R2=0.262)

Interpretation:

· Weak growth trend (0.052 patents/year).

· Low R² (0.262) – only 26.2% of variation explained by time.

· P-value (0.070) – borderline significance (p < 0.1).

 

B. Electric Motors Patents (2006–2024)

Regression Statistics

 

Multiple R

0.653

R-squared

0.426

Adjusted R-squared

0.375

Standard Error

0.812

Observations

14

Coefficients

Value

Std Error

t-Stat

P-value

Intercept (Year)

-129.6

48.5

-2.67

0.020

Slope (Patents per Year)

0.065

0.024

2.69

0.019

Regression Equation:

Motor Patents=0.065×Year−129.6(R2=0.426)Motor Patents=0.065×Year−129.6(R2=0.426)

Interpretation:

· Slightly stronger growth (0.065 patents/year).

· R² = 0.426 – 42.6% of variation explained by time.

· Statistically significant (p = 0.019).

 

C. Autonomous Driving Patents (2017–2024)

Regression Statistics

 

Multiple R

0.891

R-squared

0.794

Adjusted R-squared

0.763

Standard Error

1.183

Observations

8

Coefficients

Value

Std Error

t-Stat

P-value

Intercept (Year)

-238.3

29.7

-8.02

0.0002

Slope (Patents per Year)

0.119

0.015

7.94

0.0002

Regression Equation:

Autonomy Patents=0.119×Year−238.3(R2=0.794)Autonomy Patents=0.119×Year−238.3(R2=0.794)

Interpretation:

· Strongest growth (0.119 patents/year).

· High R² (0.794) – 79.4% of variation explained by time.

· Highly significant (p = 0.0002).

 

评论

此博客中的热门博文

Mapping Tesla's Innovation Trajectory: A Temporal and Correlational Analysis of Patent Trends